
16.32 Final Project Report: Dynamic Programming for
Minimum-Time Acrobot Control

Andrew Torgesen · May 4, 2020

1 Problem Definition

Feedback control of highly nonlinear and chaotic systems is rarely, if ever, a straightforward undertaking.
For such systems, linear optimal feedback control laws fail to provide stability unless, perhaps, they are
continually re-calculated by iteratively linearizing the nonlinear system about a pre-computed open-loop
trajectory from a nonlinear solver. Alternative methods of nonlinear control are often tailored to specific
systems by exploiting some idiosyncrasy in their dynamics, as with the methods described in [2].

Unlike nonlinear control methods based on open-loop trajectory optimization or ad hoc designs, dynamic
programming offers an alternative closed-loop control option that can be applied to a wide class of highly
nonlinear systems. In dynamic programming, heuristic search is used to derive a control policy for the
entirety of the state space of the system. The general applicability of dynamic programming methods comes
at the cost of high demands on memory usage and computational power in the derivation of the controller,
though subsequent application of the derived control strategy requires significantly less resources.

This project aims to follow the lead of efforts in [4, 3, 1] to apply dynamic programming (in the form of
value iteration of the Bellman update equation) to the minimum-time height task for the acrobot, which is a
highly nonlinear and chaotic system. Defined in [1], the height task entails controlling the acrobot to reach
a specified height with a near-zero velocity. Moreover, the minimum-time specification entails restricting the
available inputs to some pre-defined saturation values: u ∈ {−τmax, 0, τmax} to complete the height task as
quickly as possible. This report details the efforts made to model the problem and the dynamic programming
equations, implement them in C++, and apply the derived control strategy in simulation to achieve desired
behavior with the acrobot as well as the (simpler) nonlinear inverted pendulum.

2 Methods

Because of the notoriety of high run times associated with dynamic programming methods when applied
to systems with a state space dimensionality as high as that of the acrobot, it is advisable to perform test
runs on a simpler, more tractable system for development and debugging. Thus, analysis and results are
also supplied for the inverted pendulum system, whose smaller state space and more tame dynamics allow
for additional insight into the derived control policy and underlying value iteration performance.

2.1 System Model: Inverted Pendulum

Figure 1: State space depic-
tion for the inverted pendu-
lum.

Figure 1 depicts the geometry of the state space of the inverted pendulum,
where an input torque τ(t) is applied at the frictionless joint of a link of length
l connected to a point mass m, resulting in the evolution of angle θ1(t) against
the force of gravity g.

The two degree-of-freedom dynamic model for the inverted pendulum can be
written concisely with state vector x =

[
x1 x2

]T
=
[
θ1 θ̇1

]T
as:

1

ẋ =

[
x2

τ−mgl sin(x1)
ml2

]
. (1)

For the analysis in this project, model parameter values of m = 1.0 kg, l = 1.0
m, and g = 10.0 m/s2 are used.

The “goal state,” or objective of the dynamic programming control strategy to be achieved in a minimum-
time fashioned, is defined as the set of states for which the link is standing upright at or near its maximum
height with a near-zero velocity:

θ1 ≈ 180◦, θ̇1 ≈ 0 (2)

2.2 System Model: Acrobot

Figure 2: State space depiction for
the acrobot.

Figure 2 depicts the state space of the acrobot as a slight modification
and extension of the inverted pendulum. An additional link of mass m2,
length l2, and length to center-of-mass lc2 is attached to the base link (m1,
l1, lc1), and the torque τ is now applied at the center joint rather than at
the base joint, causing the evolution of both θ1(t) and θ2(t) against the
force of gravity g.

The four degree-of-freedom dynamic model for the acrobot, with state
vector x =

[
x1 x2 x3 x4

]T
=
[
θ1 θ2 θ̇1 θ̇2

]T
, can be expressed

as:

ẋ =

x3
x4

−(d2ẋ4 + φ1)/d1
τ+φ1d2/d1−m2l1lc2x

2
1 sin x2−φ2

m2l2c2
+I2−d22/d1

 , (3)

where d1 = m1l
2
c1 +m2(l21+l2c2 +2l1lc2 cosx2)+I1+I2, d2 = m2(l2c2 +l1lc2 cosx2)+I2, φ1 = −m2l1lc2x

2
4 sinx2−

2m2l1lc2x4x3 sinx2 + (m1lc1 +m2l1)g cos(x1−π/2) +φ2, φ2 = m2lc2g cos(x1 +x2−π/2), I1 = m1l
2
1/12, and

I2 = m2l
2
2/12. For the analysis in this project, model parameter values of m1 = 1.0 kg, l1 = 1.0 m, lc1 = 0.5

m, m2 = 1.0 kg, l2 = 2.0 m, lc2 = 1.0 m, and g = 9.8 m/s2 are used.

A brief comparison of Equations 1 and 3 reveals the comparatively high nonlinearity of the acrobot compared
to the inverted pendulum. In fact, as discussed in [3], the acrobot can be aptly referred to as a chaotic system,
where a slightly perturbed initial condition θ1(0), θ2(0) leads to a vastly different state space evolution given
the same input history τ(t).

Defined in [1], the set of goal states for the acrobot consist those in which the free end of the second link
clears a pre-defined height h above the height of the base joint with a near-zero velocity:

− l1 cos θ1 − l2 cos(θ1 + θ2) ≥ h, θ̇1 ≈ θ̇2 ≈ 0 (4)

The conditions defined in Equation 4 are referred to collectively as the “height task” for the acrobot.

2

2.3 State Grid Discretization

To apply dynamic programming on a continuous system, the state space of the system must be discretized,
bounded, and interpolated. The size of the resulting state space grid is ultimately the principal deciding
factor of the run time of the control policy generation algorithm. Thus, for the state space discretization in
this project, the symmetry of the inverted pendulum and acrobot systems is exploited in this project. As is
shown in Tables 1 and 2, x1 = θ1 is only discretized from 0 to 180◦, and the interpolation algorithm negates
the other state space variables to provide the mirrored scenario when necessary. This trick serves to at least
halve the size of the state space grid for each system.

Obviously, because the inverted pendulum has half the number of degrees of freedom as the acrobot, it only
requires a two-dimensional state space grid. However, in an effort to test the entirety of the state space
generation, interpolation, and usage algorithms before tackling the acrobot, a full four-dimensional state
space grid is used for the inverted pendulum, as depicted in Table 1. The variables x2 and x4 simply don’t
respond to control inputs and have no bearing on the determination of whether the state has reached a goal
state, like the table suggests.

Table 2 gives the state space discretization and goal states for the acrobot. Due to the chaotic nature of the
acrobot, the range of discretized angular velocities is expanded, also acknowledging that a wider velocities
tends to be induced in θ2 than in θ1.

Table 1: State space discretization and goal state defini-
tion for the inverted pendulum.

x xmin xmax Goal ∆x

x1 5◦ 175◦ [175◦] 10◦

x2 5◦ 355◦ [x2] 10◦

x3 −355◦/s 355◦/s [−5, 5]◦/s 10◦

x4 −355◦/s 355◦/s [x4] 10◦

Table 2: State space discretization and goal state defini-
tion for the acrobot. [Φ] is the set of members of x1 and
x2 for which Equation 4 holds true.

x xmin xmax Goal ∆x

x1 5◦ 175◦ [Φ] 10◦

x2 5◦ 355◦ [Φ] 10◦

x3 −715◦/s 715◦/s [−10, 10]◦/s 10◦

x4 −1615◦/s 1615◦/s [−10, 10]◦/s 10◦

With the given discretizations, the size of the inverted pendulum grid is 18×36×72×72 = 3, 359, 232 states,
and the size of the acrobot grid is 18× 36× 144× 324 = 30, 233, 088 states, or approximately 10 times the
size of the inverted pendulum grid.

2.4 Dynamic Programming Algorithm

2.4.1 Value Iteration

With matched state space grid sizes, the same dynamic programming and state space interpolation routines
are applied to both the inverted pendulum and the acrobot. Dynamic programming is performed through
the use of the discounted value iteration algorithm for the Bellman update equation:

V ∗k+1[x] = max
u∈U

R[xt+1(x, u)] + γV ∗k [xt+1(x, u)] (5)

To explain Equation 5, each node x in the state space is initialized with an associated value (or opposite of
cost-to-go) V ∗0 [x] = 0 and transition reward function value R[x] (which is the reward obtained by transitioning

3

into x from a different state), which is equal to 1000 if x is a goal state and zero otherwise. Subsequently,
each combination of state and possible input τ ∈ U = {−τmax, 0, τmax} is iterated over to replace V ∗k [x] with
the maximum possible V ∗k+1[x] given the available inputs. As Equation 5 suggests, each candidate V ∗k+1[x]
is obtained by simulating the evolution of the state over a time period given the input (or action) u and
accounting for the possible reward and value gained for taking that action to transition to the new state
xt+1. For this project, simulation is carried out over a time step of ∆t = 0.2 seconds using fourth-order
Runge-Kutta integration. The discount factor γ = 0.9 < 1 is used to penalize state transitions that meander
over time and do not arrive at a goal state sufficiently quickly. This value iteration process is repeated until
the maximum value change across the state grid is smaller than a pre-defined value ε:

max
x
|V ∗k+1[x]− V ∗k [x]| < ε (6)

Once the value grid converges, the optimal control policy is then extracted by defining the optimal input at
each state, u∗[x], as the input from U that yields the greatest resultant value gain:

u∗[x] = arg max
u∈U

R[xt+1(x, u)] + γV ∗[xt+1(x, u)] (7)

The derived values of u∗[x] for each state can be written into memory and used as a closed-loop feedback
control law, u(x) = u∗[x], for the simulated system (again, using ∆t = 0.2 seconds and fourth-order Runge-
Kutta integration).

2.4.2 Interpolation

Because high-order integration is being performed on a discretized grid for both the policy generation and
policy application phases, interpolation must be used to account for the majority of cases in which the state
evolution does not fall cleanly onto another state grid point. For four-dimensional interpolation, the Natural
Neighbor algorithm, derived from Voronoi tesselation techniques, is used. The algorithm can be understood
intuitively for equally-spaced grid nodes as having each node surrounded by an n-dimensional cube, and an
intermediate point is assigned a weighted average value based on how much “volume” from each neighboring
grid point’s cube the intermediate point’s cube is “stealing.”

Furthermore, during value iteration, if the evolved state ends up outside of the defined grid, then the
corresponding value function for that state evolution V ∗k [xt+1] is assigned the extremely undesirable value of
-1000, discouraging any inputs that lead to leaving the state grid.

3 Results

All of the following results correspond to a value iteration convergence criterion of ε = 0.001 and input
torque saturation value of τmax = 5 N-m. τmax is carefully selected to be large enough to allow each system
to overcome the force of gravity for most initial configurations, yet small enough to avoid losing control of
the state velocities given the level of state grid discretization.

4

3.1 Algorithm Convergence

The value iteration algorithm exhibits vastly different convergence times between the inverted pendulum and
the acrobot, which is directly attributable to the size of the underlying state grids. The inverted pendulum
value iteration converges after 49 iterations at an average iteration time of 48 seconds, resulting in a total
run time of 40 minutes. By contrast, the acrobot value iteration converges after 68 iterations with an
average iteration time of 705 seconds for an enormous run time of 13 hours.

Figures 3 and 4 characterize the convergence properties of the value iteration algorithms for the inverted
pendulum and acrobot, respectively. From the figures, it is apparent that each process exhibits two separate
convergence modes with different slopes. Surface-level analysis of input maps like Figures 5 and 6 for different
values of ε suggests that most of the changes in u∗[x] occur during the first convergence mode, though further
analysis is needed to determine why this is appears to be the case.

0 10 20 30 40 50
Iterations

10-3

10-2

10-1

100

101

102

103

M
a
x
im

u
m

 V
a
lu

e
 C

h
a
n
g
e

Figure 3: Value iteration convergence rate for the
inverted pendulum. The maximum value change cor-
responds to the maximum difference in the value of
Equation 5 over the entire state space grid for the
current iteration.

0 10 20 30 40 50 60 70
Iterations

100

105

1010

M
a
x
im

u
m

 V
a
lu

e
 C

h
a
n
g

e

Figure 4: Value iteration convergence rate for the ac-
robot. The maximum value change corresponds to the
maximum difference in the value of Equation 5 over
the entire state space grid for the current iteration.

Once its value iteration has converged, the visualized geometry of the derived optimal control policy for
the inverted pendulum provides some intuition for the shape of the cost-to-go in a minimum-time problem.
Figure 5 clearly demarcates the switching curves for the minimum-time control in the phase plane of the
inverted pendulum. Moreover, the curves are mostly consistent with the notion that torque must be applied
such that a velocity away from the goal position can be counteracted unless that velocity is so great that it
is actually more effective to aid the pendulum in swinging the long way around back to the goal state.

Figure 5: Optimal control policy for the minimum-time swing up problem for the inverted pendulum, derived with
value iteration.

By contrast, the derived control policy for the acrobot pictured in Figure 6 appears to appeal to no sense of

5

geometric intuition. The Figure shows the control policy as a function of θ1 and θ2 at cross-sections of the
four-dimensional policy for increasing values of θ̇1 and θ̇2. The apparent chaos of the minimum-time control
policy points to the chaotic aspect of the acrobot.

Figure 6: Optimal control policy for the minimum-time height task for the acrobot (visualized in cross-sections of
increasing values of θ̇1 and θ̇2), derived with value iteration.

3.2 Policy Effectiveness

In order to provide a representative picture of the overall effectiveness of the derived control policies for the
inverted pendulum and acrobot, 400 simulations from random initial configurations are run for each system.

First, the results of those 400 simulations are shown for the inverted pendulum, whose results once again
provide some opportunity to corroborate with physical intuition. For the inverted pendulum, a maximum
of 10 seconds is given for the control policy to achieve the swing up task in each simulated trial. Figures
7 and 8 depict the success rates of the control policy in each of the 400 randomized trials with τmax values
of 3 and 5 N-m, respectively. It is apparent from comparing the two figures that 3 N-m is not sufficient to
allow the inverted pendulum to overcome the force of gravity within 10 seconds when initialized well below
the y = 0 line. With an allowed torque of 5 N-m, however, a success rate of about 60% is possible from a
much wider range of initial conditions.

Figure 7: Simulated randomized trial results for the
inverted pendulum control policy with τmax = 3 N-m.
Successful trials are marked in cyan and unsuccessful
trials are marked in red.

Figure 8: Simulated randomized trial results for the
inverted pendulum control policy with τmax = 5 N-m.
Successful trials are marked in cyan and unsuccessful
trials are marked in red.

Figures 9-12 depict both successful and unsuccessful representative samples from the 400 simulation trial
runs. It is shown that in the successful trials, the control policy is able to reach and maintain the goal state
within approximately six seconds, albeit with some jitteriness. Conversely, in unsuccessful trials, the applied

6

torque is unable to build up the speed needed to swing the pendulum arm up within the allotted time (or,
in some cases, within any amount of time).

Figure 9: A successful trial run for the inverted pen-
dulum starting from a randomized initial condition.
Cyan markers indicate when the system satisfies the
success criterion. Angle values given in radians.

Figure 10: A successful trial run for the inverted pen-
dulum starting from a randomized initial condition.
Cyan markers indicate when the system satisfies the
success criterion. Angle values given in radians.

Figure 11: An unsuccessful trial run for the inverted
pendulum starting from a randomized initial condi-
tion. Angle values given in radians.

Figure 12: An unsuccessful trial run for the inverted
pendulum starting from a randomized initial condi-
tion. Angle values given in radians.

For the 400 acrobot trials, random initial values for θ1 and θ2 are used, always initializing the angular
velocities to zero. The control policy is given a maximum of 20 seconds to achieve the height task with
h = 2.0 m. Figure 13 gives the success rate for all trials, which comes out to about 50%. It is apparent
from the figure that both successful and unsuccessful trials are scattered relatively evenly throughout the
configuration space.

7

Figure 13: Simulated randomized trial results for the acrobot control policy with τmax = 5 N-m. Successful trials are
marked in cyan and unsuccessful trials are marked in red.

Figures 14-17 depict representative successful and unsuccessful trial runs for the acrobot. In contrast with
the inverted pendulum, the acrobot achieves the goal state at widely varying times depending on the initial
condition and, more unfortunately, is always unable to maintain a goal configuration for long. Unsuccessful
trial runs are difficult to parse, though one common theme appears to be that the acrobot is generally unable
to lift its first link above the horizontal y = 0 line, as with the unsuccessful inverted pendulum runs.

Figure 14: A successful trial run for the acrobot start-
ing from a randomized initial condition. Cyan mark-
ers indicate when the system satisfies the success cri-
terion. Angle values given in radians.

Figure 15: A successful trial run for the acrobot start-
ing from a randomized initial condition. Cyan mark-
ers indicate when the system satisfies the success cri-
terion. Angle values given in radians.

8

Figure 16: An unsuccessful trial run for the acrobot
starting from a randomized initial condition. Angle
values given in radians.

Figure 17: An unsuccessful trial run for the acrobot
starting from a randomized initial condition. Angle
values given in radians.

4 Discussion

The dynamic programming results for the inverted pendulum, given the relative simplicity of its dynamics,
are easier to interpret in the context of physical intuition. However, despite this relative simplicity, the
control policy is not able to perfectly control the inverted pendulum in a timely manner in all randomized
cases. In some scenarios, there is evidence that this can perhaps be attributed to an underpowered torque
saturation value. Despite this, an inspection of the visualized random trial results in Figure 8 suggests that
an underpowered actuator cannot always be the reason, as with the unsuccessful trials found in the vicinity
of the goal state.

A likely explanation is explored in [3], where it is noted that any discretization of the state space of a system
governed by continuous dynamics must technically be considered as a stochastic process when simulated
with value iteration. This entails approximately integrating Equation 5 over the set of possible alternative
transition states given the input, all weighted by their relative probability from a probability distribution
function. In [3], the authors show that introducing stochasticity into the value iteration algorithm allows for
the derivation of a control policy that can achieve the goal state close to 100% of the time. Unfortunately,
the increased accuracy comes at a huge computational cost, resulting in control policy generation run times
on the order of multiple days, which simply is not feasible for the scope of this project.

The issue of stochasticity is only compounded for the acrobot, with its expanded state space and chaotic
aspect. The results of this project show that having a relatively finely meshed state grid, while it can in
principle achieve the desired goal state on a simulated system, cannot alone guarantee high performance
under arbitrary initial conditions for highly nonlinear systems. That being said, the straight-forwardness
of the value iteration algorithm is attractive for its general applicability, as has been demonstrated by this
project’s adaptation of the algorithm to fit two separate nonlinear systems with very little additional code
(out of ≈ 500 lines of code written to implement this project from scratch, only ≈ 50 lines of additional
code is used to accommodate two different dynamic systems, thanks to polymorphism). With the addition
of probability integration terms, a tractable state space discretization, and a lot more expendable CPU time
on a modern laptop, it is not unreasonable to assume that very high-percentage and versatile closed-loop
control strategies can be derived for even highly nonlinear systems with dynamic programming.

All C++ and Matlab code used to produce these results, together with usage instructions, is available at

9

https://github.com/goromal/acrobot-dp.

References

[1] G. Boone. Minimum-time control of the acrobot. In Proceedings of International Conference on Robotics
and Automation, volume 4, pages 3281–3287 vol.4, 1997.

[2] M. W. Spong. The swing up control problem for the acrobot. IEEE Control Systems Magazine, 15(1):49–
55, 1995.

[3] R. Ueda and T. Arai. Dynamic programming for global control of the acrobot and its chaotic aspect. In
2008 IEEE International Conference on Robotics and Automation, pages 2416–2422, 2008.

[4] R. Ueda, T. Arai, and K. Matsushita. Creation and compression of global control policy for swinging up
control of the acrobot. In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 2557–2562, 2006.

10

https://github.com/goromal/acrobot-dp

	Problem Definition
	Methods
	System Model: Inverted Pendulum
	System Model: Acrobot
	State Grid Discretization
	Dynamic Programming Algorithm
	Value Iteration
	Interpolation

	Results
	Algorithm Convergence
	Policy Effectiveness

	Discussion

